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Recent echnology and experiments have fabricated high-quality superconducting hybrid nanowires. We studied
hybrid nanowires in wich normal and superconducting regions are in close proximity using the Bogoliubov-de
Gennes eqiations for superconductivity in a cylindrical nanowire. We succeeded to obtain the quantum energy
levels and wave functions of a superconducting nanowire.
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1. INTRODUCTION
Recent advances in nanoscience have demonstrated that funda-
mentally new physical phenomena are found when systems are
reduced in size to dimensions which become comparable to the
fundamental microscopic length scales of the investigated mate-
rial. Superconductivity is a macroscopic quantum phenomenon,
and therefore it is especially interesting to see how this quantum
state is influenced when the samples are reduced to nanome-
ter sizes. In such systems, new states of matter can be engi-
neered which do not occur in bulk materials. A good example
is the case of nanostructures composed of both superconduct-
ing and ferromagnetic metals. Here the proximity effects couple
the Cooper pair condensate to the spin polarized bandstructure
of a ferromagnet, allowing the local coexistence of both pairing
and magnetism. In the bulk, the possibility of such a coexistence
was examined by Larkin–Ovchinnikov1 and Fulde–Ferrell,2 giv-
ing the so-called LOFF state. But it has proved difficult to find
this state in bulk materials, possibly because it is very sensitive
to disorder.3�4

In this paper we consider composite nanowires made from
both superconducting and ferromagnetic metals. We consider the
cylindrical geometry shown in Figure 1, in which one metal
forms the core of a nanowire and the second forms the outer
cylindrical sheath. Mesoscopic wires with a similar geometry
have been examined by Mota and coworkers.5–8 In those exper-
iments a superconducting Nb or Ta wire of the typical radius
R1 = 10–20 �m was coated with a thin layer of normal metal (Ag
or Cu) of 34–15 �m in thickness. In this work we mainly con-
sider the reverse situation, in which a normal or ferromagnetic
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core is surrounded by a superconducting sheath. In this case it
is interesting to examine the spectrum of Andreev bound states
in the normal or ferromagnetic core. The situation is somewhat
analogous to a vortex core in a type II superconductor. We can
compare the Andreev states in the central cylinder to the well-
known Caroli–Matricon9 quasiparticle states of a vortex core and,
hence, consider changes in the spectrum as a function of both the
trapped magnetic flux and the physical size of a nanowire. In the
case of a ferromagnetic core we can compare the spectrum with
results for planar hybrid S/F nanostructures, as reviewed recently
by Lyuksyutov and Pokrovsky10 and by Buzdin.11 We mention
the recent work on the superconductivity of ferromagnetic wires
by Wang et al.12 which presents the significant results on the
anomalous effect of proximity revealed in superconducting mag-
netic wires. We also emphasize the promising direction in the
fabrication of MgB2 nanowires.13

2. MODEL
We model the hybrid superconductor-ferromagnet nanowire sys-
tem by extending the self-consistent theory of a type II vortex
developed by Gygi and Schlüter14 to the case of a ferromagnetic
vortex core. We start with the effective Pauli Hamiltonian for the
spin-polarized electronic states of a normal metal

Ĥ 0
�� ′ = �p̂+ eA�2

2me

��� ′ +V�� ′ �r� (1)

where −e is the electron charge, A(r) is the magnetic vector
potential, and V��r� is a general spin-dependent single potential,
where � is ↑ / ↓. This potential could be assumed to be the
sum of the ionic, Hartree, and exchange-correlation potentials of
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Fig. 1. Nanowire.

a self-consistent spin-polarized DFT calculation, in which case it
would have the form

V��r�= Vion�r�+VH�r�+Vxc�r�+�B�B+Bxc���� ′ (2)

where Vxc�r� is the spin-independent part of the exchange-
correlation potential, �B is the Bohr magneton, B�r� is the phys-
ical local magnetic field, and Bxc is an effective magnetic field
representing the exchange field of the spin-polarization in the
ferromagnet. Here ��� ′ is the vector of Pauli matrices.

To model the superconducting elements of the hybrid system,
this single-particle Hamiltonian is supplemented by an effective
attraction, which we take as the BCS contact form

V �r� r′�=−g�r���r− r′� (3)

where g�r� is the local attractive potential strength at r. This
will be zero in the normal or ferromagnetic part of the nanowire
and a constant g in the superconducting parts. For simplicity we
neglect a retardation of the attraction in the rest of this paper.
The full effective Hamiltonian for our system is

Ĥ =
∫
d3r

[∑
�� ′

��̂+
� �r�Ĥ

0
�� ′ �̂� ′ �r��

−g�r��̂+
↑ �r��̂

+
↓ �r��̂↓�r��̂↑�r�

]
(4)

Here, �̂+
� �r� and �̂� �r� are the usual field operators for the elec-

trons. In the Hartree–Fock–Gorkov approximation, this Hamil-
tonian is diagonalized by a spin-dependent Bogoliubov–Valatin
transformation.

�̂� �r� =
∑
n

(
un��r��̂n+v∗n� �r��̂

+
n

)
(5)

�̂+
� �r� =

∑
n

(
u∗
n� �r��̂

+
n +vn��r��̂n

)
(6)

The requirement that the quasiparticle creation and annihilation
operators retain the fermion anticommutation laws,

	�̂n� �̂
+
n′
= �nn′ (7)

implies that∑
n�

�u∗
n� �r�un� ′ �r′�+vn��r�v

∗
n� ′ �r′��= ��r− r′���� ′ (8)
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Fig. 2. Billiard 1.

The resulting set of Bogoliubov–de Gennes equations is

⎛
⎜⎜⎜⎜⎜⎝

Ĥ1+V↑↑ V↑↓ 0 ��r�

V↓↑ Ĥ1+V↓↓ −��r� 0

0 −�∗�r� −Ĥ1−V↑↑ −V↑↓

�∗�r� 0 −V↓↑ −Ĥ1−V↓↓

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝
un↑�

un↓�

vn↑�

vn↓�

⎞
⎟⎟⎟⎟⎠= En�

⎛
⎜⎜⎜⎜⎝
un↑�

un↓�

vn↑�

vn↓�

⎞
⎟⎟⎟⎟⎠ (9)

where Ĥ1 = �p̂+eA�2/2me−� and � is the chemical potential.
The self-consistent pairing potential corresponds to a pure

spin-singlet pairing state and is given by

��r�= g��̂↑�r��̂↓�r�� (10)

In the special case where the magnetization of the ferromag-
net is in the same collinear direction, Bxc , as the external field
B, choosing it as the spin-quantization axis ẑ� we have V↑↓ =
V↓↓ = 0. In this case the full set of four matrix Bogliubov–de
Gennes equations separates into a pair of 2×2 matrix equations

(
Ĥ1+V↑↑ ��r�

�∗�r� −Ĥ1−V↓↓

)(
un↑�

vn↓�

)
= En�

(
un↑�

vn↓�

)
(11)

(
Ĥ1+V↓↓ −��r�

−�∗�r� −Ĥ1−V↑↑

)(
un↓�
vn↑�

)
= En�

(
un↓�
vn↑�

)
(12)
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Fig. 3. Billiard 2.
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Fig. 4. Quasiparticle amplitude of the andreev state.

3. NUMERICAL CALCULATION
We will study the Bogoliubov–de Gennes equations, by using
a numerical method to solve these equations. The calcula-
tion algorithm is realized with the use of the most power-
ful FORTRAN language specially developed for mathematical
calculations.

In view of the cylindrical symmetry of the system under study,
we write the system of Bogoliubov–de Gennes equations in the
form suitable for calculations. We will also use the fact that
the amplitudes of the functions u�r� and v�r� tend to zero at the
boundary point. The solutions of the equations are determined
with the use of the Runge–Kutta method.

Taking the symmetry of our system (cylindrical) to account
and choosing the gauge in which the parameter ��r� is real, we
can write the system of Bogoliubov–de Gennes equations in the
form

ū�r� �� z�= u�nkz
�r�e−i��e−ikzz

v̄�r� �� z�= v�nkz �r�e
i��e−ikzz

(13)
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Fig. 5. Andreev spectrum as a function of the angular momentum for
billiard 1.
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Fig. 6. Andreev spectrum as a function of the angular momentum for
billiard 2.
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r
v�nkz �r�

+U�r� ·v�nkz �r�−��r� ·u�nkz
�r�= 0

(14)

where U�r�= �2/r2− �Ef −k2z/mz−E�nkz
�.

The plot of wave functions is given in Figure 4 (E0 =
3�198136337995529× 10−3 eV, Ef = 1 eV, � = 0�1 eV, kz = 0,
R1 = 150 nm, R2 = 200 nm, � = 1). In Figures 5 and 6, we
present the results of calculations for the spectrum of Andreev
states of the system.

The resulting spectrum as a function of the angular momen-
tum is shown in Figure 5 for billiard 1 (Fig. 2). The resulting
spectrum as a function of the angular momentum is shown in
Figure 6 for billiard 2 (Fig. 3). The spectrum demonstrates the
splitting caused by the boundary effect.

4. DISCUSSION
The Andreev-billiard systems are the analog of a classical bil-
liard. The Andreev billiard is interpreted as a ballistic motion
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Fig. 7. Andreev spectrum for MgB2 nanowires (billiard 1).

63



R E S E A R CH AR T I C L E Quantum Matter 3, 61–64, 2014

0 200 400 600
µ

800 1000

–0.010

–0.008

–0.006

–0.004

–0.002

0.000

0.002

0.004

0.006

0.008

0.010
E

, e
V

Fig. 8. Andreev spectrum for MgB2 nanowires (billiard 2).

with the Andreev reflection at the interface with a supercon-
ductor. The Andreev reflection is a fundamental process that
converts an electron incident on a superconductor into a hole
while a Cooper pair is added to the superconductivity conden-
sate. Figures 5 and 6 demonstrate the electron–hole symme-
try of the Andreev spectrum. One-dimensional solutions of the
Bogoliubov–de Gennes equations pass into in two-dimensional
ones with increase in �. It is worth noting that we work in the
clean limit (mean free path l� �� �).

Estimates of the penetration depth and the length scale of order
were performed in Ref. [15]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
��T �= �0√

1− t4
where t = T

Tc

��T �= �0�1−0�25t�√
1− t

(15)

where �0 = 46 nm and �0 = 74 nm, i.e., almost the characteristic
lengths of lead at zero temperature in the clean limit. We have
carried out also the calculations for MgB2 nanowires with the
parameters (R1 = 150 nm, R2 = 200 nm, kz = 0, � = 0�003 eV,
Ef = 1 eV). In Figure 7 (R1 = 150 nm, R2 = 200 nm, kz = 0,
� = 0�003 eV, Ef = 1 eV), we present the spectrum as a func-
tion of the angular momentum for MgB2 nanowires (billiard 1),
whereas Figure 8 shows the analogous dependence in the case of
billiard 2.

5. CONCLUSIONS
We studied hybrid nanowires in which normal and superconduct-
ing regions are in close proximity, by using the Bogoliubov–de
Gennes equations for superconductivity in a cylindrical nanowire.
We developed a method for numerical solutions of these equa-
tions in FORTRAN programme and obtained some preliminary
results. We succeeded to obtain the quantum energy levels and
wave functions of a superconducting nanowire. The spectrum
of states we calculated shows the interesting “Andreev Billiard”
characteristics. Preliminary results were also obtained for the
cases of a magnetic nanowire and a superconducting nanowire
containing a vortex. The calculations for a superconducting
nanowire can be extended to the cases of a superconductor-
ferromagnet hybrid nanowire and a nanowire containining one or
more superconducting flux quanta.12�17–20

Within this approach, the problems of BEC and nanowires can
be considered as well.16
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